
P a g e 1 | 16

CONNECTING CBW DEVICES TO THINGSBOARD
ThingsBoard (https://thingsboard.io/) is a widely used IoT portal that connects various remote devices to a
centralized dashboard for monitoring, reporting, and notification of alarm conditions. Its many features and
flexibility make it one of the most widely used device portals. It is available as an open-source community
edition and a closed-source Professional edition (PE) with numerous additional features not found in the
community edition. The Professional edition is available for installation on the customer’s servers or as a
cloud-hosted edition with a monthly or perpetual license. ThingsBoard also offers a hosted version,
ThingsBoard Cloud, which alleviates the need to set up and manage an instance.

This document will describe the steps to connect ControlByWeb (CBW) devices to the ThingsBoard PE
cloud-hosted edition using the data transport for MQTT. It will not provide detailed installation or setup of
ThingsBoard – they provide many tutorials and videos that assist users in configuring and using their
product. ThingsBoard has its own MQTT broker, so you do not need to provide this separately. The
ThingsBoard documentation section, MQTT Device API Reference, is a good starting point for understanding
how MQTT works with ThingsBoard. Features in this document require CBW device firmware version 3.13 or
later.

CONNECTING TO THINGSBOARD CLOUD

If you don’t already have a ThingsBoard account or instance you can connect to, you can sign up for their
base-level cloud subscription, which has a free 30-day trial period. The base subscription covers 30 devices
for $ 10.00 USD per month. You sign up at https://thingsboard.cloud/signup. Once you have a validated
account, you can view your cloud instances' overall dashboard.

https://thingsboard.io/
https://thingsboard.cloud/signup

P a g e 2 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

ADDING A DEVICE TO THINGSBOARD

Devices in ThingsBoard require a unique identifier that is unique overall to the thingsboard cloud, not just
your instance. Using the CBW serial number (such as 000CC8072C45), which is the Ethernet MAC address,
will provide such a unique identifier.

From ThingsBoard, click Entities, Devices, + to add a new device, then click Add new device. Fill in a unique
name, label, and description for this device. You can use the default profile for the Device profile. Device
profiles are templates for groups of devices and provide a way to specify standard device alarms, rule
chains, firmware files, communication parameters, and many other device settings. Then click Next:
Credentials. Select MQTT Basic for the transport type. Enter the full MAC access without the dashes as the
Client ID. This is your device’s unique identifier. Next, you can optionally enter a username and password for
the MQTT connection. Then click Add to complete adding the device to your system.

If you click the Check connectivity button, ThingsBoard will display a window showing how to use Mosquito
to verify connectivity with ThingsBoard using your credentials. After we configure our CBW device, we will
use it to test connectivity with ThingsBoard.

P a g e 3 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

CONFIGURING DEVICE MQTT PUBLICATIONS

Next, we must configure the ControlByWeb device’s MQTT interface to talk to ThingsBoard. Click on the
MQTT tab and click on Brokers. Then, enter the MQTT device configuration information.

• The hostname and port are mqtt.thingsboard.cloud, port
1883. To use an encrypted connection, you must generate a
certificate in ThingsBoard and install it on the device (see
ThingsBoard documentation on MQTT security). Secure
connections use port 8883. Leaving the hostname/IP blank or
setting the port to 0 disables the broker.

• Enter the ClientID, Username, and Password you entered in
the Device Credentials screen.

• ThingsBoard, especially the cloud version, cannot handle
continuous streams of messages. Enter a Throttle period of
100ms between each message and adjust lower with testing.

• The unit will send an MQTT PING message every Keep Alive
Interval unless there is other MQTT activity. The PING
message will be sent if there is no activity during the
minimum time. Note that this exchange takes 120 bytes, so
you would want to increase this time to 5 minutes (300
seconds) or 10 minutes (600 seconds) for a cellular
connection.

• Set the Topic Root to v1/devices/me/telemetry, the default
topic for publishing readings (timeseries data). All data MQTT
data sent to ThingsBoard is published using JSON payloads

• The Birth MQTT topic is sent when the device starts to register
with the MQTT gateway. It is looking for a message published
to v1/gateway/connect in the format {"device":"DeviceA"},
so we set the Birth Message to {"device":"${clientID}"}.

• The Last Will topic is sent when the device disconnects. In
practice, the device sends this before sending the Birth topic
to ensure the gateway knows the device is connecting again.
The Last Will topic is v1/gateway/disconnect with the
message set to {"device":"${clientID}"}.

• Publish heartbeat will send the specified packet at the specified interval. Depending on the heartbeat
payload you specify, this will take about 180 bytes or more and shouldn’t normally be used for cellular
connections. The topic must be v1/devices/me/telemetry if enabled. Also, the default payload specified
in 3.12 releases is not correctly formatted JSON and could cause the MQTT broker to disconnect. The
default payload specified is
{"id":"${clientID}","upTime":"${upTime}","address":"${ip}:${port}}" and should be
{"id":"${clientID}","upTime":"${upTime}","address":"${ip}:${port}”}

• Save Changes.

https://thingsboard.io/docs/paas/user-guide/device-credentials/
https://thingsboard.io/docs/paas/user-guide/device-credentials/

P a g e 4 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

Next, we need to configure the Publish / Subscribe sections of the MQTT sensor device configuration.

Messages are sent as JSON packets to the v1/devices/me/telemetry MQTT topic, formatted in JSON. The
message is formatted as:

{“keyword1”:”${token1}”,{“keyword2”:”${token2}”,{“keyword3”:”${token3}”}

The keywords are the names of the data that will appear as timeseries variable names in ThingsBoard. There
is no standard for names in ThingsBoard, so you can pick any names that make sense to your application. It
is recommended that they be kept short since the MQTT Payload can be a maximum of 500 bytes per
published message. Suggested keywords are rly1, din1, ain3, reg10, vin, and id. The tokens are used to
reference sensor values in the CBW device, and the actual value is replaced in the data published to
ThingsBoard. The currently supported MQTT tokens are:

MAC
Address

${mac} Name (Control Page
Header)

${name} Vin ${vin}

ClientID ${clientID} Firmware Revision ${ver} Register 1 ${register1}
Model ${model} Serial Number ${ser} Digital Input 1 ${digitalInput1}
IP Address ${ip} Epoch Time Stamp

(sec)
${dateTime} Analog Input 1 ${analogInput1}

HTTP Port ${port} Epoch Time Stamp
(msec)

${dateTimems} Relay 1 ${relay1}

HTTPS Port ${httpsPort} Sequence Number
(autoincrementing)

${seq}

RSSI
(cellular)

${rssi} Up Time (sec) ${upTime}

Latitude ${latitude}
Longitude ${longitude}

The tokens in the right column are specific to each device. They will differ based on the device's
configuration and any expansion modules or additional sensors connected to it. The View MQTT Payload
Tokens button will show a list tailored to each device.

P a g e 5 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

By default, ThingsBoard will timestamp the data when
the server receives it. If the MQTT connection is down
or intermittent, MQTT messages are queued and sent
when the connection is viable, but the time shown will
be the received time, not the queued time.
ThingsBoard supports the format where the
timestamp is specified in the JSON payload using the
ts keyword for the timestamp. The timeseries data in
ThingsBoard will be timestamped using the Epoch
millisecond timestamp from the device. In this case,
the JSON payload format is:

{“ts”:${dateTimems},"values":

{“keyword1”:”${token1}”,

{“keyword2”:”${token2}”,

{“keyword3”:”${token3}”} }

Messages can be published either from the
Control/Logic Tasks as a Scheduled, Conditional, or
Automatic Reboot Task or based on a change of
sensor device value in the Publish definition or as Log
entries when the data is sent to the device’s Log.
For example, suppose you want to publish every time the Digital Input 1 changes state. In that case, you can
select Publish on Change and then select that sensor device to trigger a publication. Only a single sensor
device can be used as a trigger. Alternatively, you can specify the sensor device(s) in an MQTT Publication,
and then in the Control/Logic Tasks, it will appear as an action that can be triggered. You can have changes
in either of two different devices trigger a message publication, along with performing two other Tasks.

ControlByWeb devices often use the Flash
Log to record activity. This is set up under
the Logging & Cloud menu. The log is 512K
of Flash memory that stores activity in a
circular buffer. Logging can be specified to
occur based on Tasks, changes on Devices,
BASIC script, SNMP, Modbus, or
HTTP/HTTPS XML/JSON API activity. When a
log event occurs, the values for devices
specified on the Logging page are captured
and sent via Email, FTP, Cloud, or MQTT.
Enable the MQTT section under SEND LOG
FILE to send Log entries via MQTT. Note
here that the payload can be up to 1000 characters in size. There are three additional variables you can use
in your publication: Log Epoch Time Stamp (sec or ms) / ${logDateTime}, ${logDateTimems}, Log Event Type
or Source ${logEventType} Log Entry ID ${logEventID} .

P a g e 6 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

With MQTT, short messages are expected to be published with just the changed data. You could have a
different MQTT Publication setup for each sensor or register on the device and have each configured to send
when that sensor or register changes value. ThingsBoard has a screen widget called the Timeseries table
that will show a continuous log of timeseries data as it is received with the timestamp. If you send each
device in its own MQTT Publish message, the Timeseries Table will only show the value received; none of the
existing values will be shown. If you want to see all the data for the device for each reading, then you would
like to have all the device registers sent up simultaneously. I chose the latter for the example X412 (4 Analog
inputs, 4 Relays) I used for this demonstration. The MQTT payload was set up as:

{"ts": ${dateTimems},"values": {"id": "${clientID}", "name":"${name}",

"model":"${model}", "ain1":"${analogInput1}",

"din2":"${digitalInput2}","ain3":"${analogInput3}", "ain4":"${analogInput4}",

"rly1": "${relay1}" , "rly2": "${relay2}", "rly3": "${relay3}", "rly4":

"${relay4}","vin":"${vin}","seq":"${seq}","rssi":"${rssi}"} }

You may also want to send data periodically when the device starts. This will be a different MQTT publication
that you can send based on a scheduled event once a day. Scheduled events are sent to each device
bootup, so this can also be an initial message that the device is working. The Initial Settings message we
defined was:

{"ts": ${dateTimems},"values": {"id": "${clientID}", "name":"${name}",

"model":"${model}","latitude": "${latitude}", "longitude": "${longitude}"} }

We set the Quality of Service (QOS) to 1 to ensure at least one transmission is sent for the publication. Since
each publication has a timestamp, ThingsBoard will automatically remove duplicate timestamped
messages. So, if the device sends the message multiple times before it receives an acknowledgment from
the MQTT broker, it will not result in duplication in ThingsBoard.

The device’s Control/Logic setup page is set to publish a message when any inputs or outputs change.

P a g e 7 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

DEVICE MQTT SUBSCRIPTIONS

ThingsBoard communicates setting and control messages to devices using two methods: Shared Attributes
and Remote Process Calls (RPC). Currently, ThingsBoard only supports Shared Attributes using MQTT for
device control.

What is an Attribute? In ThingsBoard, a device (like our CBW controller) has timeseries data and
attributes associated with the device. Attributes are values related to the device. There are three
types of attributes: Client, Server, and Shared. As their names suggest, Client attributes are only
visible to the client (device), and the server (ThingsBoard) cannot access the values. Server
attributes are visible only in ThingsBoard – the device cannot see them. Shared attributes can be
read and written by the device and the server to communicate between ThingsBoard and the device.

The device subscribes to Shared attribute changes using the v1/devices/me/attributes topic. ThingsBoard
will publish a message to the device as a JSON packet in the format {"keyword":”value”}. You must first
define the Shared Attributes for the device in ThingsBoard before they can be changed and sent to the
device. The Shared Attributes name must match the device name in the MQTT Payload Token. For example,
to control a relay, first create attributes named relay1, relay2, etc. These names must match those used to
control devices in state.json or state.xml. Running /state.json will display the names. Since these will
be used to control the device, only relays and digital and analog
outputs make sense to define as shared attributes used for
control.

In ThingsBoard, go to the device and click the Attributes tab.
Select Shared Attributes from the Entity attributes selector.
Click the + to add a new attribute. Enter the attribute name
exactly as shown in the MQTT Payload tokens, then define the
attribute type. Relays and digital outputs will be defined as
Integer, and analog outputs will be Double.

P a g e 8 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

Repeat this for all the I/O devices you will want to control.

The next step is to define the MQTT subscription. Click Add Subscription on the CBW device under MQTT and
then Publish / Subscribe. Select the MQTT Broker you have defined. The topic is v1/devices/me/attributes,
and QOS is set to 1 to ensure you receive at least one message.

When an attribute changes, like relay1, the device will receive the JSON message {"relay1":1}. The JSON
is parsed and formatted to the message relay1=1, which is sent to the same parser used for parameters
passed with state.json or state.xml. If you want to control the device using these older methods, you can
do so using MQTT.

P a g e 9 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

TESTING DEVICE TO DASHBOARD CONNECTION

Now, we want to verify connectivity between our device and ThingsBoard. From a ThingsBoard device, there
is a Latest Telemetry tab. Click on that, and it will show the latest readings from the device. Trigger a change
that will generate an MQTT Publish message. You should see the time series values change; the Last update
time will reflect when the message was generated using the ts variable. It may help to set up a register or
relay on the CBW device’s Control page, which you can control and have set to trigger a message. You can
look in the device’s debug log at /debug.html and see the MQTT messages and any errors. If the messages
are not received, verify the MQTT clientID, username and password, and the ThingsBoard MQTT address and
port. Setting the Debug Console’s Options setting to 20 will provide additional debugging detail. You can use
Mosquitto, as shown in the ThingsBoard documentation, to verify the cloud server connection.

P a g e 10 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

SETTING UP THE DASHBOARD

Under the Dashboard section of ThingsBoard, click the + button to add a new dashboard. Specify a name
and optional description for the Dashboard. ThingsBoard allows different layouts and displays depending on
whether the user connects using a desktop browser, tablet, or phone. Again, ThingsBoard documentation
describes how to configure mobile-optimized dashboards—this tutorial will cover a typical desktop browser
configuration. ThingsBoard also has a mobile application that can be used to connect to the Dashboard.

P a g e 11 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

Owners own dashboards, so if you have different user groups, you should first set up Customers and Users
and assign them to the Dashboard.

Once you have created a Dashboard, click on it to see a blank pallet. One of the key concepts in
ThingsBoard is Entity Aliases. An Entity refers to a Device or a group of Devices. Defining two Entity Aliases
for your Dashboard is useful: Device and Devices. The Devices alias refers to a group of devices you want
to appear on a single Dashboard. One common approach is to filter from all the devices based on the Profile
and Device name. Since Alarms are set in the Profile, it is common for a customer or common devices to use
the same Device Profile. Setting the Entity Aliases to the Profile, you will see all devices sharing the same
Profile. If you need to further filter the devices for
the Dashboard, you can filter based on Device’s
Name, using a wild card expression “%file%”.
Customer, Asset, or other parameters can also
filter a group of Devices. It’s crucial to click
Resolve as multiple entities to show multiple
devices on the list.

Next, define an alias called Device. This is used to
refer to a single device. Edit and set it so the
Entity is taken from dashboard state
parameters. This allows clicking on a Device and
then transitioning to a new Dashboard state,
which only shows the details for that particular
device. A Dashboard can have multiple states,
and you can define Actions that will change the
State. Each Dashboard state is a new, blank Dashboard that you can configure using ThingsBoard built-in
widgets. To implement clicking on a device from a list of devices and then display the data for the single
device, you need to:

1. Place an Entities table widget on your Dashboard.
2. Edit the Entities table. Set the data source to an Entity and enter the Entity alias Devices.
3. Add any data you want to display for all the devices on your table from the Timeseries data or

Attributes (System, Shared, or Device).
4. On the Actions tab, add a new Action. It will perform on a Row Click, called Details for Controller;

the Action will be to Navigate to a new dashboard state, and specify the state name “DeviceView.”
Click “Set entity from widget”

P a g e 12 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

5. Add a new Dashboard state called “DeviceView”. In edit mode, select the state DeviceView. This
will then display the Dashboard state DeviceView, a new Dashboard where you can add widgets.
ThingsBoard allows a Dashboard to have many different dashboard states, and each state is a
unique view of the device.

For this example, we will display the main Dashboard in the state Home and the Details in the state
DeviceView.

P a g e 13 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

Clicking on any of these Devices will then perform the Action to change the Dashboard state to DeviceView,
and the Device entity will be set to the device we clicked on the row. We can customize a Dashboard for the
single device to appear as:

To save new users time, we have provided an export of this dashboard; the rules chain a modified Control
Widgets (see the addendum articles about that). These are in the file CBW_ThingsBoard_Files.zip. You can
import these files using the same configuration described in this article.

https://controlbyweb.com/firmware/CBW_ThingsBoard_Files.zip

P a g e 14 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

ADDING WIDGETS TO THE DASHBOARD

ThingsBoard provides a variety of visual widgets to display data. Widgets can display single or multiple data
items. ThingsBoard groups widgets in bundles containing multiple standard widgets, such as Charts or
Tables. From the Dashboard, click on Edit and Add Widget to select a bundle and then a widget in the
bundle.

Steps to adding a widget:

• Under Datasource, you usually select Entity alias and then Device to choose a single device unless
you want to display data from multiple devices on the widget.

• If you have received data from the device, the timeseries data keys will be shown as a dropdown
under Data key. Select at least one data item unless your control can display multiple data items,
allowing for the specification of multiple data items.

• The widget’s form is usually self-explanatory; you select or fill in the needed items. The Basic and
Advanced tabs are in the widgets to specify additional parameters or customizations. You can enter
CSS and HTML code to control the display, and some widgets allow entering JavaScript to
manipulate the data values.

• Save the widget. It will appear at the bottom of the dashboard. Move and resize the widget as needed
to position it on the dashboard.

• Save the dashboard.

P a g e 15 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

CONTROL WIDGETS

Most of the widgets are used to display data. Some widgets allow control of output devices, such as the
relays. These are in the Control Widget bundle. We can only use control widgets that enable the setting of an
attribute value. Some of the older ThingsBoard widgets send an RPC message to the device, which requires
additional customization of the Rule Chain. On the top right corner of each widget is a tooltip that lists if the
widget can set an Attribute value or send an RPC message.

Select a Control Widget capable of setting attributes like the Power Button. Set the Target device as an Entity
alias and select Device so that it will send the command to a single device. Then choose the timeseries data
variable representing the output device's data to set the Initial state. This is also used to display the output
device's current state. For the output control, select the Action to Set attribute and choose the name of the
Shared attribute you defined earlier for each output device. Set the data type of the output device, which is
usually Integer or Double.

The control allows you to enter a custom name and customize its look on the Dashboard. The Advanced tab
provides additional customizations. You can also edit the widget and create your own custom bundle with
special CSS, HTML, and JavaScript controls.

P a g e 16 | 16

CONNECTING CBW DEVICES TO THINGSBOARD

ADDENDUM: CERTIFICATE X.509 AUTHENTICATION

ThingsBoard allows you to specify an X.509 authentication certificate to secure your MQTT device
connection. This is set up so that the device’s certificate matches what is stored on the ThingsBoard MQTT
broker to establish a secure, encrypted connection. The details for how to do this are listed on the
ThingsBoard site at https://thingsboard.io/docs/pe/user-guide/certificates/ and
https://thingsboard.io/docs/pe/user-guide/mqtt-over-ssl/. The particulars differ if you use your own
ThingsBoard instance or ThingsBoard cloud. The pages provide detailed instructions that we won’t repeat
here.

After you have followed the instructions, you will have:

• A server Certificate Authority or CA root certificate.
This is prepared on the server and needs to be saved
as a .pem file. It is used to validate the server
certificate. This is entered using the MQTT Broker's
Upload/View Client CA section.

• You can create a unique certificate for each device
or a certificate chain that trusts a single root anchor
certificate. This allows the single root anchor
certificate to be updated or renewed without
changing the certificates on every device. The
ThingsBoard documentation provides instructions
for both methods. After each approach, you will
have a private key file key.pem and a public
certificate file cert.pem. The cert.pem file is loaded
to the Upload/View Client Certificate and
key.pem is selected for the Upload/View Client
Key in the MQTT Broker setup.

• In the ThingsBoard device setup, select X. 509 for
Device Credentials and upload the generated
cert.pem file.

• Set the MQTT Broker port to 8883.

https://thingsboard.io/docs/pe/user-guide/certificates/
https://thingsboard.io/docs/pe/user-guide/mqtt-over-ssl/

